Plackett-Luce regression: A new Bayesian model for polychotomous data

نویسندگان

  • Cédric Archambeau
  • François Caron
چکیده

Multinomial logistic regression is one of the most popular models for modelling the effect of explanatory variables on a subject choice between a set of specified options. This model has found numerous applications in machine learning, psychology or economy. Bayesian inference in this model is non trivial and requires, either to resort to a MetropolisHastings algorithm, or rejection sampling within a Gibbs sampler. In this paper, we propose an alternative model to multinomial logistic regression. The model builds on the Plackett-Luce model, a popular model for multiple comparisons. We show that the introduction of a suitable set of auxiliary variables leads to an Expectation-Maximization algorithm to find Maximum A Posteriori estimates of the parameters. We further provide a full Bayesian treatment by deriving a Gibbs sampler, which only requires to sample from highly standard distributions. We also propose a variational approximate inference scheme. All are very simple to implement. One property of our Plackett-Luce regression model is that it learns a sparse set of feature weights. We compare our method to sparse Bayesian multinomial logistic regression and show that it is competitive, especially in presence of polychotomous data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data

The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...

متن کامل

Bayesian nonparametric models for ranked data

We develop a Bayesian nonparametric extension of the popular Plackett-Luce choice model that can handle an infinite number of choice items. Our framework is based on the theory of random atomic measures, with the prior specified by a gamma process. We derive a posterior characterization and a simple and effective Gibbs sampler for posterior simulation. We develop a time-varying extension of our...

متن کامل

Random Utility Theory for Social Choice

Random utility theory models an agent’s preferences on alternatives by drawing a real-valued score on each alternative (typically independently) from a parameterized distribution, and then ranking the alternatives according to scores. A special case that has received significant attention is the Plackett-Luce model, for which fast inference methods for maximum likelihood estimators are availabl...

متن کامل

Bayesian nonparametric Plackett-Luce models for the analysis of preferences for college degree programmes

In this paper we propose a Bayesian nonparametric model for clustering partial ranking data. We start by developing a Bayesian nonparametric extension of the popular Plackett–Luce choice model that can handle an infinite number of choice items. Our framework is based on the theory of random atomic measures, with the prior specified by a completely random measure. We characterise the posterior d...

متن کامل

Plackett-Luce Networks for Dyad Ranking

We propose a new method for dyad ranking, a problem that was recently introduced in the realm of preference learning. Our method, called PLNet, combines a statistical model for rank data, namely the Plackett-Luce model, with neural networks (feed-forward multi-layer perceptrons) in order to learn joint-feature representations for dyads, which are pairs of objects from two domains. The efficacy ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012